Optimization, or finding the maximums or minimums of a function, is one of the first applications of the derivative you'll learn in college calculus.
In this video, we'll go over an example where we find the dimensions of a corral (animal pen) that maximizes its area, subject to a constraint on its perimeter. Other types of optimization problems that commonly come up in calculus are:
This video goes through the essential steps of identifying constrained optimization problems, setting up the equations, and using calculus to solve for the optimum points.
You're in charge of designing a custom fish tank. The tank needs to have a square bottom and an open top. You want to maximize the volume of the tank, but you can only use 192 square inches of glass at most. What are the dimensions of the tank?
The objective function is the formula for the volume of a rectangular box:
\[ V = \text{length} \times \text{width} \times \text{height} = X \times X \times Y \\[2ex] V = X^2Y\]
The constraint equation is the total surface area of the tank (since the surface area determines the amount of glass we'll use). The surface area is simply the sum of the areas of the sides and bottom (the top is open).
\[ SA = X \times X + XY + XY + XY + XY \\[2ex] SA = X^2 + 4XY = 192\]
\[ V = X^2 \times Y \\[2ex] SA = X^2 + 4XY = 192 \\ \quad \quad \quad - X^2 \quad \quad - X^2 \\[2ex] 4XY = 192 - X^2 \\[2ex] \frac{4XY}{4X} = \frac{192 - X^2}{4X} \\[2ex] Y = \frac {1}{4X} \times (192-X^2) \\[2ex] V = X^2 \times \frac{1}{4X} \times (192-X^2) \\[2ex] V = \frac{X^2}{4X} \times (192-X^2) \\[2ex] V = \frac{X}{4} \times (192-X^2) \\[2ex] V = \frac{1}{4} \times (192X - X^3)\]
\[ V' = \frac{1}{4} \times (192 - 3X^2) = 0 \\[2ex] V' = [\frac{1}{4} \times (192 - 3X^2)] \times 4 = 0 \times 4 \\[2ex] V' = 192 - 3X^2 = 0 \\ \phantom{V' = } - 192 \quad \quad - 192 \\[2ex] - 3X^2 = -192 \\[2ex] \frac{-3X^2}{-3} = \frac{-192}{-3} \\[2ex] X^2 = 64 \\[2ex] \sqrt{X^2} = \sqrt{64} \\[2ex] X = 8\]
Test slope at \(X=7\)
\[ V'(7) = \frac{1}{4} \times (192 - 3(7)^2) \\[2ex] V'(7) = \frac{1}{4} \times (192 - 147) \\[2ex] V'(7) = \frac{1}{4} \times 45 \\[2ex] V'(7) = \frac{45}{4} = 11.25 \\[2ex]\]
Test slope at \(X=9\)
\[ V'(7) = \frac{1}{4} \times (192 - 3(9)^2) \\[2ex] V'(7) = \frac{1}{4} \times (192 - 243) \\[2ex] V'(7) = \frac{1}{4} \times -51 \\[2ex] V'(7) = \frac{-51}{4} = -12.75\]
Derivative goes from positive, to zero, to negative, so \(X = 8\) is a max
\[ Y = \frac {1} {4X} \times (192-X^2) \\[2ex] Y = \frac {1} {4 \times 8} \times (192-8^2) \\[2ex] Y = \frac {1} {32} \times (192-64) \\[2ex] Y = \frac {1} {32} \times (128) \\[2ex] Y = \frac {128} {32} \\[2ex] Y = 4\]
An \(8 \times 8 \times 4\) inch tank gives us the maximum volume.